cog

By Eric Spencer

Background

e Based on the Calculus of Inductive Constructions

o Machine-checked proofs for software and math
Defining logical operators |edit]

The calculus of constructions has very few basic operators: the only logical operator for forming propositions is V. However, this one
operator is sufficient to define all the other logical operators:

A=B = Vz:A.B (z ¢ B)
AANB = VC:P.(A=B=0C)=C
AvB = VC:P.(A=C)=(B=0C)=C
-A = VC:P.(A=C0C)
Jz:A.B = VC:P.(Vz:A.(B=C))=C

“If Athen B" = For any assumption x of type A, B must follow

Background

e Runs on Gallina

o Functional and strongly typed language
o Specification language and programming language

https://rocq-prover.org/doc/v8.9/refman/language/gallina-specification-language.html

Theorem zero_plus_n : forall n:nat, 0 + n = n.

Proof.
Verifying0+n=n intros n.
simpl.
Prove that for all natural reﬂeXiVity-
numbers adding zero to n Qed

resultsinn
Start proof block
Assume that n is an arbitrary

natural number

Simplify the expression

We have deduced that both
sides of the equation are equal,
the proof is verified

End proof block

Pierce, Benjamin C., Chris Casinghino, Joshua E. Schneider, Karl Crary, James P. Sterbenz, Stephanie
Weirich, and Alan Jeffrey. 2013. Software Foundations. Vol. 1: Logical Foundations. Electronic
textbook. https://softwarefoundations.cis.upenn.edu/. Accessed April 22, 2025.

https://softwarefoundations.cis.upenn.edu/

Failing proof

3. Define recursive (fixpoint) function
(ack) to take two natural numbers as
the input (m n : nat)

4. Pattern match on a pair of natural
numbers (if statements)
5.1fm=0,returnn+ 1 (_is wildcard)
6. 1f m >0 and n = 0, recursively call
ack

7.1fm>0andn >0, call ack with an
arg to call the function again (twice)

Nested recursion will fail and function
will never terminate (not structural
recursion)

Require Import Arith.

Fixpoint ack (m n : nat) : nat :=
match m, n with
|0, _=>n+1
|Sm,0=>ackm 1
|Sm, Sn' =>ackm' (ack m'n’)
end.

Modified: Coq Development Team. “The Ackermann Function.” The Coq Proof Assistant, Reference
Manual, v 8.19 (Inria, 2024), § Extraction, “The Ackermann Function.” Accessed April 22, 2025.
https://rocg-prover.org/doc/v8.19/refman/proofs/automatic-tactics/auto.html?highlight=ack

https://rocq-prover.org/doc/v8.19/refman/proofs/automatic-tactics/auto.html?highlight=ack

Why use it?

TLA+: Coq:
e Formal specifications of systems e Formal proofs about programs and Math
e Model concurrent system behavior e Verifying code logic and correctness
Think: temporal model checking Think: machine-verified using type theory
THEOREM PlusZero== ¥V n € Nat:n+0=n Lemma plus_0_r (n : nat) : n + 0 = n. Proof. now

rewrite Nat.add_O_r. Qed.

Why use it? - ext

e Four Color Theorem
o Provenin 2008 with
Coq that any
partitioned map can be
colored with 4 colors
and not touch any
shape with the same

color (minus corners)

Gonthier, Georges. “Formal Proof—The Four Color Theorem.” Notices of the American Mathematical Society 55, no. 11 (2008): 1382-93.

Rating - Pros

Expressiveness: proof automation + extraction to OCaml, Haskell (4/5)
Well-definedness: Calculus of Inductive Constructions (5/5)

Readability: can be intuitive to learn with those with a math/logic background (3.5/5)
Reliability: used in CompCert C compiler (5/5)

If you value a lightweight, simple solution to logical verification, this is for you

Rating - Cons

e Very old formal method language, there are better, newer options
e More Math than Software Engineering proving

Very useful for logical conditions, not so much for temporal logic / concurrency

Additional Reading

e Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof
Assistant - 2013 pdf by Adam Chlipala, MIT Press Direct

e Kaiyu Yang, Jia Deng - Learning to Prove Theorems via Interacting with Proof Assistants -
CogGym, 71K compiled human-written proofs to train a Coq proof assistant

e CogPyt - Python framework for interacting with Coq

e CoqPilot - VSC Extension for LLM-generated Coq proofs

https://direct.mit.edu/books/oa-monograph/4021/Certified-Programming-with-Dependent-TypesA
https://direct.mit.edu/books/oa-monograph/4021/Certified-Programming-with-Dependent-TypesA
https://arxiv.org/abs/1905.09381?

