
coq
By Eric Spencer



Background

● Based on the Calculus of Inductive Constructions
○ Machine-checked proofs for software and math

●

“If A then B” = For any assumption x of type A, B must follow



Background

● Runs on Gallina 
○ Functional and strongly typed language
○ Specification language and programming language

https://rocq-prover.org/doc/v8.9/refman/language/gallina-specification-language.html


Verifying 0 + n = n

1. Prove that for all natural 
numbers adding zero to n 
results in n

2. Start proof block
3. Assume that n is an arbitrary 

natural number
4. Simplify the expression
5. We have deduced that both 

sides of the equation are equal, 
the proof is verified

6. End proof block

1 Theorem zero_plus_n : forall n:nat, 0 + n = n.
2 Proof.
3   intros n.
4   simpl.
5   reflexivity.
6 Qed.

Pierce, Benjamin C., Chris Casinghino, Joshua E. Schneider, Karl Crary, James P. Sterbenz, Stephanie 
Weirich, and Alan Jeffrey. 2013. Software Foundations. Vol. 1: Logical Foundations. Electronic 
textbook. https://softwarefoundations.cis.upenn.edu/. Accessed April 22, 2025.

https://softwarefoundations.cis.upenn.edu/


Failing proof

3. Define recursive (fixpoint) function 
(ack) to take two natural numbers as 
the input (m n : nat) 
4. Pattern match on a pair of natural 
numbers (if statements)
5. If m = 0, return n + 1 (_ is wildcard)
6. If m > 0 and n = 0, recursively call 
ack
7. If m > 0 and n > 0, call ack with an 
arg to call the function again (twice)

Nested recursion will fail and function 
will never terminate (not structural 
recursion)

Require Import Arith.

Fixpoint ack (m n : nat) : nat :=
  match m, n with
  | 0, _ => n + 1
  | S m', 0 => ack m' 1
  | S m', S n' => ack m' (ack m' n')
  end.

Modified: Coq Development Team. “The Ackermann Function.” The Coq Proof Assistant, Reference 
Manual, v 8.19 (Inria, 2024), § Extraction, “The Ackermann Function.” Accessed April 22, 2025. 
https://rocq-prover.org/doc/v8.19/refman/proofs/automatic-tactics/auto.html?highlight=ack

https://rocq-prover.org/doc/v8.19/refman/proofs/automatic-tactics/auto.html?highlight=ack


Why use it?

TLA+:

● Formal specifications of systems
● Model concurrent system behavior

Think: temporal model checking

THEOREM PlusZero == ∀ n ∈ Nat : n + 0 = n

Coq:

● Formal proofs about programs and Math
● Verifying code logic and correctness

Think: machine-verified using type theory

Lemma plus_0_r (n : nat) : n + 0 = n. Proof. now 
rewrite Nat.add_0_r. Qed.



Why use it? - ext

● Four Color Theorem
○ Proven in 2008 with 

Coq that any 
partitioned map can be 
colored with 4 colors 
and not touch any 
shape with the same 
color (minus corners)

Gonthier, Georges. “Formal Proof—The Four Color Theorem.” Notices of the American Mathematical Society 55, no. 11 (2008): 1382–93.



Rating - Pros

● Expressiveness: proof automation + extraction to OCaml, Haskell (4/5)
● Well-definedness: Calculus of Inductive Constructions (5/5)
● Readability: can be intuitive to learn with those with a math/logic background (3.5/5)
● Reliability: used in CompCert C compiler (5/5)

If you value a lightweight, simple solution to logical verification, this is for you



Rating - Cons

● Very old formal method language, there are better, newer options
● More Math than Software Engineering proving

Very useful for logical conditions, not so much for temporal logic / concurrency



Additional Reading

● Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof 
Assistant - 2013 pdf by Adam Chlipala, MIT Press Direct

● Kaiyu Yang, Jia Deng - Learning to Prove Theorems via Interacting with Proof Assistants - 
CoqGym, 71K compiled human-written proofs to train a Coq proof assistant

● CoqPyt - Python framework for interacting with Coq
● CoqPilot - VSC Extension for LLM-generated Coq proofs

https://direct.mit.edu/books/oa-monograph/4021/Certified-Programming-with-Dependent-TypesA
https://direct.mit.edu/books/oa-monograph/4021/Certified-Programming-with-Dependent-TypesA
https://arxiv.org/abs/1905.09381?

